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.Intro.ductim.
_

-This paper describes an investigation, based on the Struc-
tural Learning Theory (Scendura, 1973; in press), of problem,
sequencing. The first step involved analyzing a set of problems,
to determine the knowledge (rules) required for solving the prob-
lems. Here, a set of .saMple problem's. (geometric .construction
problems in this study) was analyzed using a Method (Scandura,
Dürnin, and Wulfeck, 1974) forOeriv4ng and simplifying rules "or
algorithms for solving the problems. Next, assumptions were
adopted from the Structural Learning Theofy concerning how sub-
jects learnand apply-rules-to solve problems., A computer was
programmed according to these assumptions. and .given some of the
simplified rules identified during'the previous step, in order to'
simulate.sgpe aspects of subjects' Problem solving and learning.
Verious problem sequences wkere then given to the .progeam, to
jdentifY ttioSe that were Solvable and-illearnable." Finally., for
initial evaluation of the approach, sequences which were learn-
able.for the program were given to subjects, whose performance
was compared with the performance of -subjects given random-or
learner-controlled sequences.

AnAlysla al amaatris Canatnuatian Etablemm.-

Scandura, Durnin,-and Wulfeck, (1974)- developed a quasi-
systematic mefhod for constructing sets of rules underlying suc-
cessful solutions for probleMS.*2- Briefly, it involves: (1)

sampling 'and classifying problems to be'analyzed into'groups of
4

*1. This paper is based on sections of the author's. disser-
tation'(Wulfeck, 1975) conducted under the chairmanship of Dr. J.
M. Scandura. This research w6s supported in part by a Disserta-
tion Year Scholarship" from ,the University of Pennsylvania, in
part by a grant from the.Office of Computing Services, UniVersitY
of PennsYlvania, and in part by a grant from the.National,Insti-
tute ci Health to pr. J. M. Scandura.

, The author -is now at the Navy Personnel Research and
Development Center, San Diesgo, CA 92152. The opinions and asser-
tions contained herein are those of the writer and are not to be
comstrued as official or reflecting the views of the Navy Depart-

, ment.

*2. Theoretical foundations underlyino the method
analysis are given in Scandure (1973. Chap. 5).
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similar.problems; (2), sPecifying a rule-for solVing each(classi7N
fied,problem; (3) identifying lower order. (component)-rules which,\
may be.operated uPon (e.9. concatenated) to form the ..soli.ition--f

rules identified in step 2, and,.more impOrtantly,'-identifying.
higher Otder rules Which gperate_on.the lowerorderrules to gen-,
erate the solution rules; (4) eliminating the solution, rules made
.unnecessary by the introduction of the lower and -higher prder
tules;'and'(3) testing and)refining the resulting seCofrules so
that:solution rules .for'all the oricdnally grouped problems: and
new- problem from the same_groups, can be generated. Requiring
that the tesulting set of rules account for problem'solutions .in.
this waY makes the_snalxsiS "self-validating.".'

To illustrate the method of analysis, consider the foll'owing
two geometric construction tasks:

(I.) "Given point P, Line L, and Distance D, construct a

circle with radius D,.passing tbrouch P, tangent to L."

(2.) "Given triangle ABC, construct (circumscribe) A circle
paSsing through points A, B, and C."

After specifying -solution:rules.for these- tasks,.and others,
lower order ru,le,s involved 'in_generating he Solutions were iden-r

:tified:

.RI: Construct a circle with a given point as center, ata.6; a
given distance as radius. (p, d) ==R1=> c(p. d)

R2: Construct a line parallel to a- given line at a giien
-distance from the given line. (1, d) ==R2=> d)

R3: 'Construct the locus' of points (a line) equidistant from
two given points. (p, p/). ==R3=> 11(p, p/)

R4: Construct a circle with a given point as center, pass-
ing through another given poiht. (p, p/) .==R4=> c(p, d(p,
p/))

-From commonalities aMong solution rules for tasks (I) 'and
(2) above, and others, Scandura, Durnin, and Wulfeck (1974) iden-
tified a."two-loci" higher order yule which could operate on
rules like RI - R4 above to yield.solution rules for tasks (I).
and (2J. The higher o-rder rule. essentially- concatenates rules .
for_conStructing two different loci, then a rule for constructing
thgoal figure" from an intersection point (pW of tbe loCi.
For tasks (I) and (2), the output rules' are (141(o, d), R2(1, d),
R1(px, d)], and CR3(a, b), R3, c), R4(bx, a)].

Rule RI above is ubasic".enough. so .that it' .need not be
fUrther analyzed However, the others (including the higher ,

rder-ru-le) can bettirth-eT=n-a4V7z494-4.4s4-n-gtha_same_matti_90. For.
example, :rules R2 andR34::_When re-anayzed, were found to be

..
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generable from the following lower order rulesF

R5: -Construct a point at a given distance from a giiven

line.

R6: Construct a point equidistant from two given points.

R7: Construct a line through° two given points.

A higher order rule which* concatenates two rules for 'constructing
pbints satisfying the same condition a required line must

satisfy, then a rule for constructing the "doe] figure" -(the

- line) can operate on ruleS R5 07 to yield rules R2 and. R3 as
-outputs.

The two higher order rules discussed above can also .be
further analyzed. Both of them involve _concatenating tm/ rules
which yield separate elements, then reconcatenating a rule which
operates on the-separate elements to yield a "goal figure" (see
Mulfeck, 1975, for details of the analysis wfth respect to higher .

order rules). In effect, higher order rules can themselves be
concatenated using a higher order, concatenation rules.

In extending the geometric constructiop anaves, the method .

of anilysis described above waS'reapplied 7recursively" 'as illus-
trated. Analysis continued until rules performable by seventh
crade students.were reached. The basic ryles identified included
lowerorder rul4s.-(for constr`ucting a circile given the center ande;
radius, drawing a line or-segment through two given ,points, find=
ing a poiht of intersecticin intersediting lines or circles,
.measuring (setting a -compass . to) Oe distance between given
points, and choosing arbitrary points or distances., The .basic
higher order rules included "compos,ityonP (concatenate -two rules
when the )optput of one is-a required iinput of the Second), and
"conjunction" (combine two rules yielding individual elements .

into a Single rule for constructing tido elements).

At this point, it di ght appear. 1.1at to \derive sequences, one
need only - trace backward through the analysis which yielded the
basic set. HoWever, this strategy! is -insuffidient since (a)
there areother sequences than the( reVerse of the ordv in which
problems were considered, and (by there_ are sequen,pes- which
include problemS) not even_ .considered during the , original
analysis, but_Solvable via the idirtified 'rules. In general, -the
competence -analysis does not .yieiLd a strict hierarchY from which
it \is possible to "read" performable sequences. Furi-hermore, and.
'post, important, one cannot make predictions about/Problem solving
and learning with respecf to 1 task sequences,/ without making
(explicit or implicit) assumptimns about huma/ n/learning and per
formanc

. _
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.C.2thauter imPleaantatigua.

This approach to sPquence investigation ftherefore. depended
upon adoptibn Of eiplicit asSumptiohs concerning sObjects' appli-
cation'and acquii,ition of rules in prOblem solving situations.
The simplest of several poSsible- rule ODntro1 mechanisms (sets of -

problem solving and learning assumptions) proposed by -Scam:lure
(1073)- was adopted hve, -and implemehted as a computer 'program to
aid4 in sequence development.

B

It is asSumed that the..mechanism is coal directed, and that
prpbléms are first uniformly and- correctly. interpreted' (as a pair
consistihg of given information [S], and a uni tary goal (GI, not
á- series of subgoals).*3

INSERT FIGURE 1 ABOUT HERE.-

Briefly, 'the program works as shown in Fi cure 1: (1) Given a
problem situation <S, G> for which at least one "applicable's-rule
iS ,available (in the set of rules available to the program), one

. of these_is _applied to S to satisfy G. In the program, applica-
bility decisions are made by "matching" specifications of rule
ranges and domains- against G and S. (2) Given a goal situation
for which no appliable rules are available, then control shifts
to the higher level goal H(G) of deriving a rule applicable to
the previous goal. -(3) Given that H(G) is satisfied, theri any
dertved rule .is added to _the set of available rules, -and oontrol
reverts to the previous -goal W. G X. -

These control assumptions Pare 'intentionally heutral with
respect to. other limitations on human information proce-ssing
capacity, memory, etc. That is; :the program is built to work
perfectly with respect to applicabilitY determination, rule exe-
cution, access of :the rule set, etc. Under these assumptions, -

the program is an idealized. problem. solver; -human subjects, -of
course, are nat. To limit the program's performance for simula-
tion .purposes (in the absence Of more formal limiting assump- -

.tions), a goal limit .(GLIMIT in Figure 1) is imposed which con-
trols the highest level goal, per problem, the mechanism is
allowed, to attempt.*4

*3. In the Structural_Learning Theory_, it is assumed that a
presented _problem is adopte'd a pair of ordered sUbcoals, -"in-
terpret. the problem" .(determine its meaning), and .nsolve the sin-
.terpreted problem." While this Paper 'is .concerned with the second
of these., no essential changes .in methods -Or approach appear
necessary to treat. the fir.st .(see.,Scandura, 1973; in press).
Some directions in investig,ating interpretation-of geometric con
struction problems a r e given in Nulfeck (1975)_.
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The overall across-problem operatiOn of ,the prperam is

detailed in Figure 2. (This part of the program is concerned
with problem "book-keeping" and is-outsidethe theory.)

. INSERT FIGURE 2 ABOUT HERE.

The program is initially given a set of basic rules; this is the
only. "part of the program speci:fic to,the particular content
domain. Nhen the program is given a list of problems to Solve,
-it. attempts problems in turn, discarding.solved problems but
,adding rules derived,during those solutions to' its rule set.
Failed problems are retained on . a list, and are later re-
attempted. This continues until ,all problems are solved (or

until the number of 'failed problems reaches some prepecified
failure rimit). Ibis process -has the effect 'of re-ordering
presented problems into a sequence in which each problempis solv-

. able accOrding to control assumptions and the goal limit con-
straint on its first presentation.. .The program outpdts may then'
be,used to discard redundant problems, to-rearrange problems, or
to add intermediate problems so that some unsolved problem(s) mayj
become solvable.:

The highest level goal at.which a.problem becomes solvable
by the program (before goal reversion). seems to provide a natural
measure of the "step size" or "difficulty....-tef. (between)
-Sequenced problems. For example, problems for which a solution
rule already exists in the current rule set,.are solvable ,at the

. initial goel leVel-(CG.= 1 in Figure 1); Problems whose solution
rules are derivable from.rules in the set via a higher order rule :

in the set are solvable at-the second goal level (CG = 2), etc.
This step size measure summarizes (but- is not perfeCtly'_ or
linearly related to) both the amount of processing probleM solu-
tions entail,"and the numbe,r of rules involved in generating
problem solutions. -The cent-1'a]. point.is that there is no fixed a
priori step si2e for any problem; the step.size is always rela-
tive to the knowledge base--the rule set--existing at the time a
problem is presented: When the goal limit (GLIMIT in Figure 1)

As set to.some number N, this restricts the output sequences of
the program to thoSe in which every problem is solvable at CG <

N; sequenced problems are thus restricted to some maximum step
-size or level of difficulty.

-,
(

*4. Extensions of the' 'mechanism, designed to deal with
memory processes, processing ,capacity, and other capabilities Of
subjects are available in the Structural Learnina Theory. See
Scandura(1973, in press.).'

.-
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Evatical .E12.5.1uatui011.

According to the above discussion, we expect that with human'
subjects, both failure frequencies and solution latencies are
related to increasing step size. Then, sequences in which step
sizes are kept small -should lead to better overall performance
than hoSe,in which'step Sizeis.uncontrolled.

Four' groupS (ten'seventh7grade- subjects each) were aiven .

differeht. sequence arrangements of'geometric cOnstructiOn: tasks:
proup X received a sequence Of 2.0 .probiems- 'devised, using. the.'
-program, ,so..that the step size for problemS 18 and 20 was three,
for all others,.tWo.. Group X2 received a sequence obtained: from
:the..first by deleting four problems. According to the prograces
performance,' this.increaSed the-step sizes tor problems 9 and: 13.
to three's and da=2.3.5.1dthe.step..size .for probleth 18 totwo...(The
.higher order rule tor problem.9 der.i.yed at.CG = 3 was useble-.on

-Problem .18). Group. .R 'Was.given.the original 20 problems, but
atter problem6, problem order was randbm. Subjects in grOup. L;
after problem 6, wereallowed to choose each problem .to ettempt
next.*5

Results .and Discussion. ..

Means of subjects'_percent success oh problems attemptd
after problem 60were: gr.oup 11, 85%; X2, 73%; L, 47%; and-RT-28%.
All differences were stgnificant (p < .05) except XI-X2 and L-R.
EvidentlY, Sequences 'derived according to the program so that
step sizes are uhiformly small lead to significantly better per-
formance than (do random or learner-controlled sequences. Also,
subjeCts must halie'uged previously derived rules in generating
solutions to later problems, otherwise all groups would have-per-
formed similarly.

-
. Mean times to solution on problems commcn to grouos Xl .and

a

*5 Procedures: Subjects were individually given problems
one at a time (except croup L after problem 6) on separate.pages.
For each problem; the,problem statement was read aloud by the ex-
perimenter, given elementS were pointed out, relational term;
were explained,. and,a sketch of the "goal figure" in required re-
lations to given elements was' drawn. Subjects perfotmed allr-con-
structions on the-problem pages. If a problem .was failed,( th'e

subject was shown a.solution rdle for it, and was required tO-ex-
ecute the rule correctly on the problem page. .Subjects retained,
their problem pages, through their sequences for memory support of.
previousJy derived solution rules.' Problems I -through 6 wei--e

used to pretest.subjects' prior knowledge: All subjeCts were in-
itially given problem 63'no Fubject '_solved it. Subjects were
then given problems 1 through 6, ahd,all-subjects solved problems'
1 through 6. These results supported the assumption that basic
rules were at an appropriate level of detail.

7



X2 were in complete agreement with predictions , from the Strac-
tural Learning Theory. 'The onlY significant differepdes (in mean
log solution times) across X1 -.and X2 occurred in predicted direc-
tions on problems 9 (X1<X2), 13 (X1<X2)., and 18 -(X2<X1).- 'These
differences clearly'track the step siZe differentes 'of problems,
and therefore provide strong additional supOrt for the viability
of a goal-switchLng type of control mechanism. Also,.. X2 subjects
were _evidently Ole'to retain and use higher'.orde'r rules derived
on some problems for later problems eien though they were not
given'memory support for higher order rules.

. .

.

As expected, a significant positiva.association between step
size and frequency of failure occurred over the experiment; No
subject Solved a problem when the step size was greater than
three. Perhaps "memory, load" approacheS subjects' processing
capacities at step sizes around-t-hre, and if so, this might pro-
--v-i-ERF--W -more appropriate constraint on the program's performance
-than simply imposing a goal limit.*6

However, a sionificant step size (2 or 3) by sequence condi-
tion interaction on percent success scores "also occurred, such
that L, and particularly R subjects performed differentially mOre
poorly- on step-size-three problems than did the Xl or X2 sub7
jects. While other.factors (e.g. motivation) May be involved.
the X1 and' X2 sequences haye a "chaining" property such that,
problems' solution rules are often' derived usingr rules from
recent Previous problems. This was less often the case in the L.
ancERs-e-q-uen-cas-.7-Gha-i-n-th-g-i-s_brAirectly 'related to con-

., trolled step. size: wheh a_reletively
given to the program to be sequented, the, restrictions on goal
level force a moderate degree of chaining.- On the other a-land, if

a larger set of problems, including many different .alteknative
intermediate problems between "basic". and terminal ones, were
gi,veh to the program,' controlled step size Would not necessarily
force much chaining. To the extent the _rule, -"recencY"..or
eih,sfellting are involved in subjects' Memorial proce'Sses, it may
be' desirable to include additional assumptions concerning memory
mechanisms. ,

eThere was a faiely wide range over group L subjects of suc-
cess on chosen problems. Some L subjects had explicit bases for
choosing "next' problems, which seemed releted_to the step sizes

, of chosen problems, and to success on-problems; Three subjects
who stated that they chose on the hlris of similarity. (of problem
statement and display) to previous -L-oblems,.chose chained prob-
lems of small step size (most often two), and solved about 73%of
these. However; two subjects,/who) chose "dissimilar" problems,

*6. Determining memory load inyolves consddering . goal lev-
els, and numbers of rules involved at different levels. but also

.
the loads imposed by particUlar' rules during their execution.
See Scandura (1973; in press).
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a
-never chose problems with step sizes as small .as two, and solved
none of thedr chosen problems. The ,remaining subjects indicited
no particular basis for selection, and salved . about half their
chosen problems. These results,- arid others (e.g.,.Pask 4pd Scott,
1971) suggest that some Subjects may have useful problem selec-
tion skillS (rules), toward which additional research might be
directed'.

EEEEREOLE.5.

1Pask, and Scott, B. C.. E. 'Learning and teach,ing.strategies. in
_ traneformationai skt.11. klnitish. Joucaaj 01. Mathematical' and

.Stati.st.i.C.31.2.5,1tahology, 1971, 24, 205-'7229. '
. .

Scandura , 5.t.ruttur.al learRina Theory .pnd research.
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Figure 1.:, Problem Solving and Learning Mechanism:

.
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